

# **Noise-Sentry-RT-Personal**

User's Manual



Nov 5 2014

Bruno Paillard

| 1 INTRODUCTION                                                                                                                                                  | 3                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 2 APPLICATIONS                                                                                                                                                  | 3                                                                                                                           |
| 3 WARNINGS                                                                                                                                                      | 3                                                                                                                           |
| 4 GETTING STARTED                                                                                                                                               | 4                                                                                                                           |
| 4.1 Software Installation                                                                                                                                       | 4                                                                                                                           |
| 4.2 Hardware Installation                                                                                                                                       | 4                                                                                                                           |
| 4.3 Initial Test and Configuration                                                                                                                              | 4                                                                                                                           |
| 5 INSTRUMENT FUNCTIONS AND DESCRIP                                                                                                                              | TION5                                                                                                                       |
| 6 PRINCIPLE OF OPERATION                                                                                                                                        | 5                                                                                                                           |
| 6.1 Power Consumption                                                                                                                                           | 5                                                                                                                           |
| 6.2 Battery Charging                                                                                                                                            | 5                                                                                                                           |
| 6.3 Modes of Operation                                                                                                                                          | 6                                                                                                                           |
| 6.4         LED Indicators                                                                                                                                      | 6<br>6                                                                                                                      |
| 6.5 Sound Level Calculation                                                                                                                                     |                                                                                                                             |
| 6.6 Recording                                                                                                                                                   | 7                                                                                                                           |
| 7 NOISE_SENTRY_RTP_MANAGER APPLIC                                                                                                                               | ATION9                                                                                                                      |
| 7.1 Starting the Application                                                                                                                                    | 11                                                                                                                          |
| 7.2 Main Functions                                                                                                                                              | 12                                                                                                                          |
| 7.3Setup Tab7.3.1Time and Date Field7.3.2Temperature Field7.3.3Instrument Info Field7.3.4Recording Field7.3.5Settings Field7.3.6Battery Field7.3.7Signals Field | 12         12         12         12         12         12         12         12         13         14         17         17 |
| 7.4 Records Tab                                                                                                                                                 | 17                                                                                                                          |

| 7.4<br>7.4 | .1 Instrument Download         | 17<br>   |  |
|------------|--------------------------------|----------|--|
| 7.4        | .3 File Open                   | 18       |  |
| 7.4        | .4 Exporting Data              | 18       |  |
| 7.4        | .5 Global Level Calculations   | 18       |  |
| 7.4<br>7.4 | .6 Graph Controls              | 19<br>10 |  |
| 7.4        |                                | 19       |  |
| 7.5        | Spectrum Tab                   | 20       |  |
| 7.5        | .1 Window                      | 20       |  |
| 7.5        | .2 Weighting                   | 20       |  |
| 7.5        | .3 Scale                       | 21       |  |
| 7.5        | .4 Cursor, zoom and Pan        | 21       |  |
| 8 N        |                                | 21       |  |
| 8.1        | Battery Care                   | 21       |  |
| 8.2        | 2 Reset Procedure 21           |          |  |
| 8.3        | 3 Operation Outdoors 2         |          |  |
| 8.4        | .4 Cleaning                    |          |  |
| 8.5        | Software and Firmware Upgrades | 22       |  |
| 9 Т        |                                | 22       |  |
| 9.1        | USB Power Limitation           | 22       |  |
| 9.2        | USB Driver Installation 22     |          |  |
| 9.3        | Connection Problems 23         |          |  |
| 10         | SPECIFICATIONS                 | 23       |  |
| 10.1       | Frequency Response             | 24       |  |
| 10.2       | Noise Floor                    | 25       |  |
| 10.3       | Saturation Level               | 26       |  |
| 10.4       | Scale                          | 26       |  |
| 11         | SOFTWARE SPECIFICATIONS        | 26       |  |

## 1 Introduction

*Noise-Sentry-RT-Personal* is a new generation of smart integrating personal sound-level meter/datalogger. It includes a digital MEMS microphone, an accurate date/time clock, and a non-volatile 64 Mb recording memory. Running on battery, it can record sound pressure for a week non-stop, or for 3 weeks 8 hours a day. Its very small size allows it to be worn by personnel.

The Noise-Sentry-RT-Personal includes the following features:

- Individual Manufacturer's Certificate of Calibration from Convergence Instrument provided with every instrument purchased.
- Digital very sensitive MEMS microphone (31 dBA typical noise floor)
- Completely sealed weatherproof enclosure designed for outdoors applications.
- All-digital design.
- Ultra stable sensitivity (field recalibration is easily done, but seldom required)
- Very low sensitivity variation due to temperature changes
- Very low sensitivity to vibrations
- A and C weighting curves.
- Integrating Sound-Level Meter, records L-max, L-min and Leq levels.
- Software function calculates global Leq and/or dose, according to ISO and OSHA methods.
- Adjustable response time.
- Internal timer allows multiple preprogrammed recording start and stop date and time.
- Integrated oscilloscope function that can show the acoustic signal in real time.
- Integrated spectral analyzer function that can show the spectrum (or 3<sup>rd</sup>-octave bands) in real time.
- Allows the observation of recorded levels while the recording is ongoing.
- Works standalone, or USB connected.
- Long life internal rechargeable battery that recharges from USB and most USB chargers.
- Can be field-calibrated.
- Observes and records 100% of the acoustic signal (no missed samples).
- Editable individual custom ID for easier instrument management.
- All settings are stored in non-volatile memory. So the instrument will regain full functionality from hard-reset or battery loss.

## 2 Applications

- Sound level and acoustic dose measurement and recording.
- Monitoring of safe working conditions.
- Specially designed for outdoors wear.

## 3 Warnings



Never blow air at the microphone



## Avoid over-discharging the battery

- Recharge the instrument immediately if the LED indicates a low-battery condition
- Even if the instrument is Idle all or most of the time, recharge it fully at least once every 6 months.



Do not store or operate the instrument at temperatures exceeding the following limits

• -20 degC to 60 degC (-4 degF to 140 degF)

## 4 Getting Started

#### 4.1 Software Installation

• On the PC that is used to setup the instrument, run *Noise\_Sentry\_RTP\_Manager\_Installer.exe*. This installs the *Noise\_Sentry\_RTP\_Manager* application, as well as its USB driver and documentation.

Note: Perform the software installation above BEFORE connecting the instrument to the PC.

#### 4.2 Hardware Installation

- 1. Connect the instrument to an available USB port on the PC
- 2. Verify that the PC properly detects the instrument and loads the driver. In case of doubt see section *Troubleshooting*.

#### 4.3 Initial Test and Configuration

- 1. Upon connection to the PC, the *charge* LED should light-up yellow (charging) or green (charged). The *operating* LED should blink once per second.
- Go into Start\All Programs\Noise\_Sentry\_RTP\_Manager and run Noise\_Sentry\_RTP\_Manager.exe. The front-panel described in <u>Figure 2</u> appears, and the application tries to connect to the instrument. If it fails to find the instrument it indicates No Device Found. If this is the case see section <u>Troubleshooting</u>
- 3. Otherwise the application switches-on the *Noise-Sentry-RT-Personal* and starts communicating with it.
- 4. If the Time and Date in the upper right corner of the application window are not properly adjusted the application asks if you want the instrument time to be synchronized to the PC time. Only say YES if the PC time is correct.
- 5. In addition, the application detects if the time zone of the instrument is different from the time zone of the PC. If it is, the application asks to set the instrument to the same time zone as the PC.

Note: If (in rare cases) the instrument is not intended to be used in the same time zone as that of the PC, we suggest to temporarily change the PC's time zone to the time zone where the instrument will be recording, let the application set the instrument to the PC's time zone, and change the PC's time zone back after that initial setting. Afterwards if/whenever the application asks to change the instrument time zone back to the PC's time zone, simply choose to cancel the adjustment.

6. In the front-panel of the application you should see the acoustic signal display in real-time.

## 5 Instrument Functions and Description

The instrument connects to a PC on a USB port. The *Noise\_Sentry\_RTP\_Manager* application is used to set its operating parameters and download recorded data.



Figure 1 Noise-Sentry-RT-P

- 1. Attachment Clip
- 2. Reset Button
- 3. Operation LED
- 4. Charge LED
- 5. USB Connector

## 6 **Principle of Operation**

#### 6.1 **Power Consumption**

The *Noise-Sentry-RT-P* is always on. However, when not in operation it only measures time, which only takes a tiny operating current. In that *Idle* state it can stay on for up to 6 months. When the *Noise-Sentry-RT-P* is actively measuring, its power consumption allows it to record for 1 week non-stop, or 3 weeks 8 hours a day.

In applications where the *Noise-Sentry-RT-P* must record for longer periods of time, it can be connected to a USB charger. For outdoor-use, photovoltaic USB chargers such as the *Solar Joos* <u>http://solarjoos.com/</u> can be used to operate the instrument outdoors for very long periods of time, as long as the hours of sunshine are sufficient.

## 6.2 Battery Charging

The battery charges whenever the following conditions are met:

- The battery has not reached full-charge
- The instrument is connected to a PC's USB port and the PC is not in standby, or
- The instrument is connected to a USB charger.

While charging, the charge LED is orange. When fully charged, the LED changes to green.

The charge time from a completely discharged state varies with the amount of power the PC allows the instrument to draw. Charge time is normally around 2H30. If the PC does not allow the fast charge current, the charge time can increase up to 5 to 6 hours.

Note: When connected to a PC, battery charging stops while the PC is in standby.

Note: It is OK to leave the instrument connected to a PC or USB charger all the time. The smart charger inside the instrument will stop charging as soon as the battery reaches full-charge.

## 6.3 Modes of Operation

The *Noise-Sentry-RT-P* has three modes of operation:

| Mode      | Operation                                                                 | Power Consumption                                                                                                                                   |
|-----------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| ldle      | Disconnected from USB and<br>not actively recording - Only<br>keeps time. | Minimal: can stay on for up to a year.                                                                                                              |
| Active    | Connected to USB – Not recording – Instrument is fully on and measuring   | Instrument draws power from USB to power itself, and if necessary recharge its battery. Battery is not depleted.                                    |
| Recording | USB-connected or not - Fully on and recording.                            | If USB-connected, power comes from USB. If not, power comes from the battery. If not connected the instrument can record for up to 7 days non-stop. |

Table 1

## 6.4 LED Indicators

The Noise-Sentry-RT-P has two LED indicators:

## 6.4.1 Charge LED

The charge LED is always fully on or off.

| LED State | Meaning                                                                      |
|-----------|------------------------------------------------------------------------------|
| Off       | Instrument is disconnected, or is connected to a PC that is in standby.      |
| Green     | Instrument is connected to a PC or USB charger, and the battery is full.     |
| Orange    | Instrument is connected to a PC or USB charger, and the battery is charging. |

Table 2

## 6.4.2 Operation LED

The operation LED is always blinking.

| LED State           | Meaning                                                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off                 | Instrument is in <i>Idle</i> mode.                                                                                                                                                                                     |
| 1-blink/second      | Instrument is in Active mode, but is not actively recording.                                                                                                                                                           |
| 2-<br>blinks/second | Instrument is actively recording.                                                                                                                                                                                      |
| 4-<br>blinks/second | Battery is low. Recharge as soon as possible. If the battery level becomes critical the instrument will go to <i>Idle</i> mode (LED-off) in order to safeguard the battery against over-discharge as much as possible. |

#### Table 3

## 6.5 Sound Level Calculation

After extracting the signal power, the calculated sound levels are low-pass filtered (smoothed) using an adjustable time constant. This time constant is applied to the calculation of *L-min* and *L-max*, but not *Leq*. A typical short time constant (125 ms and lower) allows the measurements to track sharp changes, while a longer time constant (1s and longer) provides more stable (cleaner) RMS values that average out short transients.

The *Leq* is integrated linearly over the specified log interval.

The sound level statistics (*L-min*, *L-max* and *Leq*) are gathered for the specified *log-interval* before being written to the recording memory. The log-interval represents the interval at which the selected statistics are written to memory. Therefore a longer log-interval uses less memory, while a shorter log-interval provides better time resolution and allows the user to distinguish between events that occurred close together. The statistics (*L-min*, *L-max* and *Leq*) are reset at the beginning of each log-interval. Then the statistics are gathered sample-by-sample during the log-interval. At the end of each log interval the calculated statistics are written to memory, and the next log-interval is started. No portion of the signal is overlooked.

#### 6.6 Recording

Every time a recording is started, a new record is created in memory and filled until the recording is stopped. That record is time-stamped, so the signals can be displayed with respect to absolute date/time. Records are stored sequentially in the instrument's memory. There is no limit to the number of records that the memory can contain, only a limit to the total size of the data recorded. The *Noise\_Sentry\_RTP\_Manager* application displays the total memory recording time as a function of the various setup parameters.

After (or while) recording, the records contained in memory can be downloaded from the instrument and observed or exported. In case a recording is ongoing the last record is only displayed up to the present time.

The recording is stopped automatically when the recording memory is exhausted. This way a new record will not overwrite an old one.

The recording memory is non-volatile, so there is no risk of losing the data that has already been recorded, even in the case of a battery failure.

Note: It is perfectly legal to find empty records in memory. That occurs typically when a recording is started and stopped quickly, before any data had time to be written to memory. In that case only the time-stamp is written to memory.

To record sound levels proceed as follows:

- 1. Select the statistics to be recorded (*L-min*, *L-max* and/or *Leq*).
- Select the log-interval. Note that the total recording time is automatically calculated and displayed by the *Noise\_Sentry\_RTP\_Manager* application, as a function of the log-interval and statistics selected. The log-interval is adjustable in 125 ms increments, from 125 ms up to 2H.
- 3. Select the time constant used to smooth the measured sound levels for *L-min* and *L-max*. Choose a short time constant (125 ms or lower) to be able to detect short peaks and valleys. Choose a longer time constant (1 s or higher) to provide cleaner more stable sound levels.
- 4. When ready to start a recording immediately, simply press the *Record* button. Press *Record* again to stop the recording.
- 5. Or to set a recording schedule:
  - Check to make sure that the instrument time is correct. If that is not the case press the Sync button (*Figure 2* (6)) in order to automatically set the instrument time to the PC time.
  - Press the *Timer* button. Set a start time and date using the calendar.
  - Set the On/Off schedule for either a single recording with no stop, a single recording with a programmed stop, or a recurring recording with a set duration and a set idle period.
  - Click OK to arm the trigger.



## 7 Noise\_Sentry\_RTP\_Manager Application



- 1. Real-Time Acoustic signal
- 2. Auto-Range button
- 3. Memory fill indicator
- 4. Timer button
- 5. Record button
- 6. Instrument Time indicator
- 7. Tab selector
- 8. Instrument Temperature indicator
- 9. Erase button
- 10. Instrument Custom ID
- 11. Instrument Information
- 12. Settings button
- 13. Field calibration button
- 14. Battery Condition, Charge and Recording Time Field
- 15. Sound Level indicator



Figure 3 Record Tab

- 1. Cursor field
- 2. Recorded levels
- 3. dB/Lin button
- 4. Pan and zoom buttons
- 5. Record number selector
- 6. Cursor
- 7. Data source
- 8. File Save button
- 9. File Open button
- 10. Instrument Download button
- 11. Export button
- 12. Global level/dose calculation method
- 13. Global Level/Time-Weighted-Average value
- 14. Percentiles



## Figure 4 Spectrum Tab

- 1. Cursor, Zoom and Pan controls
- 2. Cursor values display
- 3. dB/Lin button
- 4. Auto-scale button
- 5. Cursor
- 6. Spectrum
- 7. Spectral controls
- 8. Spectrum reset button

#### 7.1 Starting the Application

The application can be run with or without a *Noise-Sentry-RT-P* connected. When a *Noise-Sentry-RT-P* is not connected the application can only be used to display and analyze a previously saved log file. All the controls and indicators related to the instrument are grayed out.

To control a *Noise-Sentry-RT-P* using the *Noise\_Sentry\_RTP\_Manager*, proceed as follows:

- 1. Connect the instrument to an available USB connector on the PC.
- 2. Make sure that the charge LED lights-up yellow or green, and that the operation LED starts blinking. If not, review the installation procedure, or see section *Troubleshooting*.

- 3. Go into *Start\All Programs\Noise\_Sentry\_RT\_Personal*, and run *Noise\_Sentry\_RTP\_Manager.exe*.
- The front-panel described in <u>Figure 2</u> appears, and the application tries to connect to the instrument. If it fails to find the instrument it indicates *No Device Found*. If this is the case see section *Troubleshooting*
- 5. Otherwise the application immediately starts communicating with the Noise-Sentry-RT-P.

## 7.2 Main Functions

The application has three main tabs:

- **The Setup Tab:** Is used to setup the instrument and monitor the real-time signal and level (see *Figure 2*).
- **The Records Tab:** Is used to download, display and export the data from the Noise-Sentry-RT-P (see *Figure 3*).
- **The Spectrum Tab:** Is used to display a real-time power spectrum or 3<sup>rd</sup> octave display from the Noise-Sentry-RT-P (see *Figure 4*).

#### 7.3 Setup Tab

The setup tab is seen in *Figure 2*. It is divided into seven fields.

#### 7.3.1 Time and Date Field

This field displays the internal time of the instrument. If the instrument time is not properly adjusted, press *Synchronize*. This synchronizes precisely the instrument time to the PC time. Make sure the PC time is accurate before synchronizing the instrument.

Note: Time synchronization is not allowed while the instrument is recording.

#### 7.3.2 Temperature Field

This field is used to display the instrument's internal temperature in degC or degF. It is normal for the internal temperature to rise slightly while the instrument is charging.

#### 7.3.3 Instrument Info Field

The instrument info field provides instrument information, such as instrument model, serial number and firmware revision. In addition the *User-ID* field may be used to assign a custom identifier to the instrument.

To set, modify or delete the *User-ID*, simply place the cursor in the *User-ID* box and write a new identifier or clear the text. The new identifier is written to the instrument's memory as soon as *return* or *enter* is pressed, or if the mouse is left-clicked outside of the box.

The User-ID is written to non-volatile memory, so it is retained even in the event of a reset or battery failure.

## 7.3.4 Recording Field

The recording field has three buttons:

- **Record** The *Record* button is used to immediately create a new record and start recording. The new record is placed in memory immediately after the last one. The recording stops when the memory is exhausted, or when the *Record* button is pressed again. The recording parameters, such as number and types of values recorded...etc. must be adjusted prior to starting the recording.
- **Timer** The *Timer* button is used to set a start time, date and recording schedule. This is only allowed when a recording is not already in progress. To set the timer, press the *Timer* button. Then set the start date, time and schedule, and press the *OK* button to arm the timer.
- **Erase** The *Erase* button erases unconditionally all the data that has been recorded in the instrument, making room for new records.

The *Memory Depth* bar provides two indications:

- The percentage of memory already used (indicated by the green bar). The bar is completely grey when the memory is empty and completely green when the memory is full.
- The total memory time, in Days-Hours-Minutes-Seconds. The total memory time is displayed at the right extremity of the scale. It is calculated as a function of the instrument settings, such as log interval, statistics recorded...etc. <u>Therefore it will change dynamically as the settings</u> are modified, to reflect the new overall recording time.

#### 7.3.4.1 Timer Setting

When the *Timer* button is pressed, the timer settings panel appears.

- 1. To choose a start time, either use the direct entry field (*Figure 5* (4)), or press the *Calendar View* button to the right of the date-time field.
- 2. Leaving the date-time field at zero will start the schedule immediately after the timer is armed.
- 3. In the "Stay-On-For" field choose either to keep recording indefinitely, or stop after a set amount of time. For instance to record for the usual 8h work shift, set the On-Time to 8h and select the "Stay-On-For" button.
- 4. In the "Stay-Off-For" field choose either to stay off indefinitely after recording, or start recording again after a set amount of time. For instance to record repeatedly for 8h work shifts, set the Off-Time to 16h and select the "Stay-Off-For" button.
- 5. Press the OK button to exit and arm the timer.
- 6. Press the *Cancel* button, or the *Window-Close* button to exit without arming the timer.





- 1. OK button Closes the window and arms the timer
- 2. Stay-Off-For field
- 3. Stay-On-For field
- 4. Date/Time field Can be used to enter date and time directly
- 5. Cancel button Closes the window without arming the timer



#### Figure 6 Calendar View

- 1. Cancel button Closes the window without changing the date/time setting
- 2. OK button Closes the window and accepts the newly set date/time
- 3. Set to Now button Set the time and date to the present time
- 4. Date setting field Click a date to set
- 5. Time setting field Use the field to set a new time
- 6. Window close button Closes the window without changing the date/time setting

## 7.3.5 Settings Field

The settings field contains the Settings and Calibration buttons.

#### 7.3.5.1 Instrument Settings Panel

The instrument settings panel opens when the user presses the *Settings* button. Changing the settings is only allowed when the instrument is not actively recording.



Figure 7 Instrument Settings Panel

- 1. OK button Closes the window
- 2. Recall Button Recalls a configuration from a configuration file
- 3. Save Button Saves a configuration to a configuration file
- 4. Time constant for sound level measurement
- 5. Statistics selector
- 6. Log interval control
- 7. dB-A/dB-C selector

## 7.3.5.1.1 dB-A/dB-C Selector

Use this selector to choose the weighting curve. The default is dB-A, which approximates the sensitivity of human hearing.

## 7.3.5.1.2 Log Interval

The log interval defines the time between two successive recorded points. When recording, the L-min, L-max and Leq are reset at the beginning of each log interval. Then the instrument observes the signals for the duration of the log interval, and updates the L-min, L-max and Leq accordingly. At the end of the log interval the selected levels are written to memory. Then the next log interval is started... and so on until the recording is stopped or the memory is exhausted.

The log interval can be adjusted from 125 ms  $(1/8^{th} s)$  to 2 H in increments of 125 ms.

The amount of memory consumed is inversely proportional to the log interval. The *Memory-Depth* indicator in the *Setup* panel automatically calculates the overall recording time as a function of the selection.

## 7.3.5.1.3 Statistics Selectors

The statistics selector specifies the type of statistic to record. To select a statistic, simply press on the corresponding green indicator to light it up. By default, all statistics (L-min, L-max and Leq) are selected.

The amount of memory consumed while recording is proportional to the number of statistics selected. The *Memory-Depth* indicator in the *Setup* panel automatically calculates the total recording time as a function of the selection.

#### 7.3.5.1.4 Time Constant

When calculating the L-min and L-max levels, the instantaneous RMS levels are first low-pass-filtered with an adjustable time constant.

A shorter time constant should be chosen to be able to track rapid changes. Otherwise the measurements will be smoothed out. On the other hand, when the RMS levels are slowly varying, a longer time constant will provide more precise values.

Typical fast time constants are 125 ms and under. An extra fast time constant of 35 ms is sometimes used to capture L-max on very short transients.

Typical slow time constants are 1s and over.

Note: The time constant is not used for the calculation of Leq. In that case, the sound energy is averaged linearly over the specified log interval.

#### 7.3.5.1.5 Closing the Window

Each adjustment is implemented in the instrument when the *OK* button is pressed. If the window is closed without clicking *OK*, then the settings are not implemented.

#### 7.3.5.2 Calibration

The instrument can be field-calibrated using a 94 dB calibrator with a standard 1/2" opening.

Field calibration is performed by the *Noise-Sentry-RT-P Manager* application. Follow these steps:

- 1. Remove the wind-screen
- 2. Place the instrument's microphone in the calibrator
- 3. Start the calibrator
- 4. Press the *Calibrate* button on the application window and follow the on-screen instructions.



Figure 8 Calibration

## 7.3.6 Battery Field

This battery condition field indicates the remaining battery capacity. The indicator is surrounded by a yellow indicator that lights-up when the battery is charging.

The battery condition indicator is scaled to indicate the approximate number of days of recording time remaining in the battery.

## 7.3.7 Signals Field

The signals field provides information about the acoustic signal and sound level.

- The graph presents the acoustic signal as it is measured in real-time. When selected, the auto-scale button allows the scale to be dynamically adjusted so that the signal always fits in the graph. When deselected, the scale is fixed. When using a fixed scale, the scale can be adjusted manually by double-clicking and writing new values directly in the top-most and bottom-most marker values of the vertical scale. The acoustic signal is scaled in *Pascals*.
- The vertical bar to the right of the graph show the sound level measured in real time. The sound level is scaled in dB (dB-A or dB-C, depending on the selected weighting curve).

#### 7.4 Records Tab

The *Records* tab is seen in <u>Figure 3</u>. It is used to retrieve the recorded information from the *Noise-Sentry-RT-P* or from a saved file, and to display and optionally export the recorded logs.

#### 7.4.1 Instrument Download

To download data from the instrument press the *Instrument Download* button. The whole contents of the instrument's memory are downloaded, and the newest record is displayed in the graph.

The *Record Selector* at the top-left of the page (*Figure 3* (5)) indicates how many records have been downloaded. It shows one separate tick per record downloaded. Use the blue slider to select the desired record. When selecting a record the indication *No-Data* is displayed on top of any empty graph.

Note: It is legal for a record to contain no data at all. That usually means that the recording was started and stopped before any data had time to be recorded. In such a case the time-stamp is still valid and can be used to determine when that recording occurred.

The Source indicator shows the User-ID of the instrument, if any has been set.

The Y-scale can be displayed in dB or linear (Pa) scale.

The graph shows up to three curves:

- L-max in red
- Leq in white
- L-min in green

#### 7.4.2 File Save

Pressing the *Save File* button saves all the records downloaded from the instrument to a file on the PC. In addition to the whole contents of the recording memory the file also contains ancillary information, such as calibration, instrument information...etc.

The file is saved in a proprietary format with the extension .cil.

By default the file is saved with a name that contains the *User-ID* of the instrument, if any has been set, as well as the present date and time.

## 7.4.3 File Open

Pressing the *Open File* button recalls all the records previously saved to a *.cil* file. The function works very much like the *Instrument Download* function, except that the data comes from a previously saved file.

The Source field shows the User-ID of the instrument the data comes from.

That function works even when no instrument is connected to the PC, so it can be used to examine data that was recorded elsewhere and sent to the user as a file.

## 7.4.4 Exporting Data

The data <u>of the record being viewed</u> can be exported for further display or processing. The data is exported to a tab-delimited text format that can be imported in *Excel* and other spreadsheet applications. Data can only be exported one record at a time.

## 7.4.5 Global Level Calculations

The application automatically calculates the global levels or equivalent dose corresponding to the displayed data.

The global values can be calculated according to several methods. At the time of this writing we offer the linear ISO (Q=3) method, as well as the OSHA (Q=5) method. Other methods may follow.

These global values are calculated from the Leq curve (white curve). In order to obtain the global values, the Leq MUST BE among the recorded statistics.

The global values are calculated <u>from the visible part of the graph</u> only. Play with the zoom and pan functions to exclude portions of the recording from the calculation.

## 7.4.6 Graph Controls

The graph can be adjusted and analyzed using the following techniques:

#### 7.4.7 Cursor Control

A cursor can be used to precisely measure the level at a particular point in time.

To the bottom-left of the graph is a three-button control. The left-most looks like a cross. In order to use the cursor proceed as follows:

- Press on the button that looks like a cross (see Figure 3 (3))
- Place the mouse over the point where the X and Y cursor lines meet and left-click. This grabs the cursor.
- Drag the cursor to the specific curve and time of interest. The cursor can be forced to jump from one curve to the other.
- Read the X and Y values in the cursor field underneath the graph.

#### 7.4.7.1 Zoom Control

To use the zoom control, simply press the button that looks like a magnifying glass and choose one of the following zoom functions:

- Zoom X-Y
- Zoom X

.



十月

an 1911 An 1-

xx iii x xx ii - -

Zoom-Extents

After choosing the function, the cursor changes to a magnifying glass. Click and drag on the graph to apply the required zoom.

#### 7.4.7.2 Pan Control

To pan a graph left, right up or down, first press on the *Hand* button to the left of the graph. Then position the mouse over the graph. Left-click to "grab" the graph, and move the mouse to pan the graph as desired.

#### 7.4.7.3 X-Y-Scale Direct Modification

Another way to zoom a graph is to directly change its scale. To do that, simply click on the value for leftmost or right-most marker of the X-scale, and select its value. Type a new value to replace the old one. The scale is adjusted so that that new value is used at the beginning or end of the scale.

The same technique can be applied to the bottom-most or top-most values of the Y-scale of the graph.

## 7.5 Spectrum Tab

The *Spectrum* tab is shown on *Figure 4*. When that tab is selected the time-domain signals captured by the instrument are presented in the form of averaged power spectra. The processing is as follows:



#### Figure 9 (-> shows the defaults)

#### 7.5.1 Window

The type of window chosen has an impact on the spectral resolution. The *Hanning* window is generally a good choice that provides good spectral selectivity.

## 7.5.2 Weighting

The averaging can be exponential or linear.

- **Exponential Averaging** is comparable to a low-pass time filtering of the spectrum. In other words each spectral line is low-pass filtered so that the resulting spectrum is smoothed out over time. In that case the *Nb\_Avg* represents an equivalent averaging time constant, expressed in number of successive spectra. The averaging is continuous and does not stop. Each successive spectrum is taken into account in the calculation. A larger value of *Nb\_Avg* produces a spectrum that is more stable, but also averages-out short-lived transients.
- Linear Averaging takes an equal-weight average of *Nb\_Avg* successive spectra. After the *Nb\_Avg* spectra have been observed the result is frozen.

In both cases the *Reset* button discards the present display and restarts the averaging from zero.

The Averaging Mode can be chosen from several choices:

- **No Averaging** Only presents instantaneous power spectra, irrespective of the other settings.
- Vector Averaging Vector averaging eliminates noise from synchronous signals. Vector averaging computes the average of complex quantities directly. The real part is averaged separately from the imaginary part. Averaging the real part separately from the imaginary part can reduce the noise floor for random signals because random signals are not phase coherent from one time record to the next. The real and imaginary parts are averaged separately, reducing noise but usually requiring a trigger.
- **RMS Averaging** RMS averaging reduces signal fluctuations but not the noise floor. The noise floor is not reduced because RMS averaging averages the power of the signal. *RMS Averaging* is the most common type.
- **Peak-Hold** Peak hold retains the peak levels of the measured spectra. Peak hold is performed at each frequency line separately, retaining peak levels from one FFT record to the next.

Note: All the FFT calculation is performed on the PC. The raw time-signals are transferred from the instrument to the PC, where the FFT and averaging calculations are performed. This means that some signal samples may be missed. The processing is performed at the speed the PC is capable of.

## 7.5.3 Scale

The power spectra can be displayed in dB or linear (Pa) scale. Changing the scale does not restart the averaging.

#### 7.5.4 Cursor, Zoom and Pan

Cursor, Zooming and Panning is done the same way as in the *Records* graphs. See section <u>Graph</u> Controls

The auto-scale button can be pressed or released to obtain an automatic or fixed vertical scale. When the graph is in fixed scale, writing directly in the values of the end-scale markers sets the scale to fit those values.

#### 8 Maintenance

#### 8.1 Battery Care

The following factors affect battery life:

- Prolonged use at extreme temperatures (close to the limits of -20 degC and +60 degC (-4 degF to 140 degF) will shorten the life of the battery.
- Over-discharge of the battery will shorten the life of the battery. Always fully recharge the battery when it is low or at least every 6 months, whichever comes first.
- Never leave the instrument in storage with the timer set to periodically record.

## 8.2 Reset Procedure

In the unlikely case where the instrument's firmware crashes a hardware reset can be performed by inserting a small rod into the reset hole and pushing until a slight click is felt. There is <u>no risk</u> of losing

any recorded data or settings by resetting the instrument. However a hardware reset will reset the instrument's time and date to a value in year 1903.

## 8.3 **Operation Outdoors**

Thanks to its potted construction, the *Noise-Sentry-RT-P* is weather-proof. It can safely be used outdoors provided that the temperature is always within the safe limits. However when using it outdoors with a risk of rain or snow, make sure its USB connector is facing down, so water will not accumulate in the connector and microphone port.

## 8.4 Cleaning

Use a damp sponge or soft cloth.

Note: Do not use solvents.

Do not submerge in water.

Do not blow onto or near the microphone

## 8.5 Software and Firmware Upgrades

Software upgrades are found on our web site: <u>www.convergenceinstruments.com</u>.

After upgrading the software, if a firmware upgrade is required it will be applied automatically when the upgraded *Noise\_Sentry\_RTP\_Manager* application is started. In that case <u>do not disconnect</u> the instrument until the upgrade is completely over. Failure to do that will place the instrument in a state where it no longer works.

Note: A firmware upgrade will not lose any recorded data, but will reset the instrument's settings.

Note: When upgrading the instrument's firmware always make sure that <u>only one instrument is</u> connected to the PC at a time.

## 9 Troubleshooting

## 9.1 USB Power Limitation

In some instances a PC will not allow the instrument to connect to one of its USB port because it cannot provide the battery charge current requested by the instrument. If you suspect that this may be a factor, try connecting the instrument to the output of an <u>externally-powered</u> USB hub that is capable of providing a full USB load (500 mA).

## 9.2 USB Driver Installation

If the *Noise\_Sentry\_RTP\_Manager* application is unable to communicate with the *Noise-Sentry-RT-P* it may be because the USB driver failed to install properly. To check the USB driver installation follow the procedure below:

1. Disconnect the USB cable.

- 2. If necessary take the PC out of stand-by.
- 3. Reconnect the instrument to an available USB port on the PC.
- 4. Make sure the charge LED lights-up green (charged) or yellow (charging). If not, make sure that the PC's USB port is functional and that the USB cable is not damaged. If necessary try on a different PC, and/or with a different USB cable. The charge LED is just an indication that the port is powered. It should light-up, even if the USB driver is not installed properly.
- 5. Make sure that the operation LED starts blinking. If not go to step 6.
- 6. Open the *Device Manager* on the PC. This is usually found in *Control Panel System and Maintenance*.
- 7. Just after connecting the instrument to the PC, observe that the *Device Manager* window refreshes.
- 8. Verify that an item named *DDCI Platform* or *Noise-Sentry-RT-P* has been created in the list of devices.
- 9. If an unknown item appears, or an item named *DDCI Platform* or *Noise-Sentry-RT-P* is found but has an exclamation mark (indicating a problem) beside it, disconnect the device and try reinstalling the driver (see step 10).
- To re-install the driver disconnect the instrument from the PC. Then Go into Start\All Programs\Noise\_Sentry\_RT\_Management\Driver, and run DDCI\_Driver\_Install.exe. This reinstalls the USB driver. When installing on Windows XP, follow the procedure detailed in Noise\_Sentry\_RT\_XPDriver\_Install.pdf

#### 9.3 Connection Problems

Failure to communicate with the PC can also be caused by poor USB cable contacts. Make sure the USB connector is fully inserted into the socket of the *Noise-Sentry-RT-P*. Inspect the inside of the socket in the instrument. If dirt is lodged in the socket, use dry compressed air to expel it.

## **10 Specifications**

| Category                              | Specification                                                                                                                 |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Bandwidth                             | • 25 Hz to 8 kHz                                                                                                              |
| Microphone Sensor                     | Digital MEMS                                                                                                                  |
| Precision Class                       | • Type II                                                                                                                     |
| Saturation Level (typical<br>@ 1 kHz) | <ul><li>117 dB-A</li><li>114 dB-C</li></ul>                                                                                   |
| Temperature Error                     | <ul> <li>Better than 0.1 dB (0 degC &lt; T &lt; 60 degC)</li> <li>Better than 0.5 dB (-20 degC &lt; T &lt; 60 degC</li> </ul> |
| Sensitivity to Vibrations             | • 60 dB <sub>SPL</sub> /g (20 dB lower than typical measurement microphone)                                                   |

| Weighting Curve                | <ul><li>dB-A</li><li>dB-C</li></ul>                                                                                                                  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noise-Floor (Typical)          | <ul><li>31 dB-A</li><li>37 dB-C</li></ul>                                                                                                            |
| Recording Resolution           | • 0.1 dB                                                                                                                                             |
| Duty Rate of Signal<br>Capture | 100% - No Missed Samples                                                                                                                             |
| Real-Time Spectral<br>Display  | • 512-point Power Spectrum – dB or Lin Scale.                                                                                                        |
| Calibration                    | Field-calibrated using a 1/2" calibrator                                                                                                             |
| Connectivity                   | • USB                                                                                                                                                |
| Battery Type                   | Integral Li-Poly - USB-Rechargeable                                                                                                                  |
| Recharge Time                  | • 2 H 30 (Typical)                                                                                                                                   |
| Battery Autonomy               | <ul><li>7 days while recording non-stop</li><li>3 weeks while recording 8 hours a day</li></ul>                                                      |
| Battery Life                   | <ul> <li>&gt; 300 Charge/Discharge Cycles</li> </ul>                                                                                                 |
| Temperature Range              | <ul> <li>-20 degC to 60 degC (-4 degF to 140 degF)</li> </ul>                                                                                        |
| Recording Memory               | Non-Volatile Flash Memory                                                                                                                            |
| Recording Memory<br>Capacity   | <ul> <li>64 Mb</li> <li>Ex: can continuously record Lmax, Lmin and Leq levels at 1s intervals for 16 days, or 10s intervals for 160 days.</li> </ul> |
| Recording/Erasure<br>Cycles    | Greater than 100 000                                                                                                                                 |
| Data Retention                 | Greater than 20 Years                                                                                                                                |
| Dimensions                     | <ul> <li>76.2 mm x 39.4 mm x 59 mm</li> <li>(3" x 1.55" x 0.81")</li> </ul>                                                                          |
| Weight                         | • 100 g                                                                                                                                              |
| Construction                   | Integrally Potted Weather-Proof ABS Enclosure                                                                                                        |

#### Table 4

## **10.1 Frequency Response**

Figure 10 shows the typical spectral error in dB-A and dB-C, together with the standard type II limit lines.



## Figure 10

That frequency response is measured at the angle of incidence shown in *Figure 11*.





## 10.2 Noise Floor

| Weighting Curve | Noise           |
|-----------------|-----------------|
| dB-A            | 31 dB (typical) |
| dB-C            | 37 dB (typical) |

Table 5

## **10.3 Saturation Level**

| Weighting Curve | Saturation Level         |
|-----------------|--------------------------|
| dB-A            | 117 dB @ 1 kHz (typical) |
| dB-C            | 114 dB @ 1 kHz (typical) |

## Table 6

## 10.4 Scale

The *Noise-Sentry-RT-P* records sound levels with a resolution of 1/10<sup>th</sup> of a dB.

# **11 Software Specifications**

| Category             | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compatibility        | • Windows XP, Windows Vista, Windows 7, Windows 8                                                                                                                                                                                                                                                                                                                                                                                               |
| Configuration        | <ul> <li>Instrument Internal Time</li> <li>User ID</li> <li>Weighting curve</li> <li>Recording Interval</li> <li>Recording Statistics</li> <li>Time constant for level measurement</li> <li>Start Date/Time and recording schedule</li> </ul>                                                                                                                                                                                                   |
| Display              | <ul> <li>Instrument Internal Time</li> <li>Instrument Internal Temperature</li> <li>Instrument Information (Serial Number, User-ID, Calibrationetc.)</li> <li>Real-Time Acoustic Signal</li> <li>Real-Time Sound Level</li> <li>Real-Time Spectrum</li> <li>Recorded Sound Levels</li> <li>Global Leq/Dose Calculation (ISO and OSHA methods)</li> <li>Battery Level and Charge</li> <li>All graphs can be viewed in dB or Lin scale</li> </ul> |
| Record<br>Management | <ul> <li>Record Manual Start/Stop</li> <li>Scheduled Start-Stop</li> <li>Recording Memory Download (Even while recording)</li> <li>Recording Memory Clear</li> <li>Auto-Calculation of Memory Depth</li> </ul>                                                                                                                                                                                                                                  |
| Data Export          | <ul> <li>Export to Tab-Delimited Format for Use with Spreadsheet<br/>Applications</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |

