

Convergence Instrument’s

Development to Deployment Code
Instrumentation Architecture

October 14 2010

Bruno Paillard

1 INTRODUCTION __ 2

2 THE DDCI CONCEPT __ 2

3 CODE INSTRUMENTATION _____________________________________ 3

4 SYMBOLIC ACCESS __ 3

5 IMPROVED CODE RELIABILITY _________________________________ 3

6 ANALYSIS WITH HARDWARE IN THE LOOP_______________________ 4

7 PRODUCTION TESTING__ 4

8 A NEW PARADIGM FOR EMBEDDED SYSTEM DEVELOPMENT ______ 4

The DDCI Interface Concept 1

1 Introduction

Many modern instruments feature Personal Computer connectivity. A PC connection allows features
that a stand-alone instrument cannot provide, such as data upload/download, improved user-interface
for instrument management, instrument automation… etc.

Irrespective of the physical aspects of the connection, the PC connectivity is usually achieved through
the use of an ad-hoc protocol that is specific to the instrument. This simple approach is easy to
implement, but it has a few shortcomings, especially during the development phase of the instrument.
For instance it only provides a limited set of functions. Adding functions to this set usually requires a
redesign of the software on the PC side, but also on the instrument side.

In contrast all the PC-connected instruments at Convergence Instruments rely on the Development to
Deployment Code Instrumentation interface (DDCI). This interface is realized using a software layer
running in the instrument, as well as one on the PC. Together these two layers implement an extremely
versatile communication function that can be used in all the phases of the application life-cycle from the
development and debugging through production testing and finally to the user application.

2 The DDCI Concept

When developing PC-connected instruments that include complex embedded processing the traditional
approach is to use two separate communication links:

• A specialized debugging link (emulator pod or the like) is used during the development phase.
This link provides a tremendous amount of low-level visibility into the executing code, but it usually
interferes with the real-time operation of the instrument. For instance the processor often has to be
stopped before variables or registers can be observed. In addition it does not provide high-level
analysis capabilities. It is a great tool to know if a variable is written properly, but not so good to
analyze the frequency content of a stretch of signal.

• The application-level communication link is used to support connectivity at the application (user)
level. It provides a limited set of functions that the instrument requires for its operation. These
functions all need to be designed-in on the PC and on the instrument as part of the development
process.

What the DDCI architecture provides is a unique communication channel that serves both purposes
seamlessly. In so doing the DDCI architecture eliminates many of the tasks that are required to go from
the development phase to the deployed application phase, thereby accelerating the development of the
instrument.

• During development it provides real-time debugging at an application level that is usually not
achievable using standard debugging and emulation techniques. In particular reading, writing and
code-control functions do not require CPU halt. The interface allows the code to be instrumented
in real-time and in the real operating conditions with very little overhead.

• After application deployment, the same interface is used to support user-control and
communications with the instrument via the same set of functions used during the development
phase.

The fact that the same functions and libraries are used in both phases of the application life-cycle
insures that there is no additional development to support the instrument in the deployed phase. No
additional development also means no unexpected behavior associated with this added development.

The DDCI Interface Concept 2

The development of the DDCI interface represents one of the initial steps that we take when we
develop a new series of instruments. The DDCI interface is not specific to a particular instrument, but
rather is designed for the processor platform that the instrument series is based on. This initial step
represents a fair amount of work, but this cost is gained back many times over in the acceleration it
provides to the development of the instrument.

3 Code Instrumentation

The DDCI interface consists in a powerful set of basic functions that provide visibility into the code
running on the instrument’s processor, in real time, while the instrument is processing real data.

• RAM (volatile) memory read and write: Any variable can be observed or written by the PC
in real time.

• Flash (non-volatile) memory read and write: Useful for reading or writing calibration data, field-
firmware upgrades…etc.

• Peripheral registers read and write: Useful for special hardware configuration, during
debugging, production testing…etc.

• Force code execution (dynamic redirection): Allows the PC to take control of the instrument at a
very low level.

Because these functions are always enabled, both in the instrument’s CPU and on the PC, adding new
features to the instrument’s management software does not always require an instrument firmware
upgrade. For instance adding a function to clear an existing variable in the instrument’s firmware (for
instance a variable containing the result of ongoing statistics being measured by the instrument) can be
done directly using the resident DDCI interface. By contrast adding such a function using a traditional
approach would require a modification of the instrument’s firmware, in addition to a modification of the
instrument management software on the PC.

4 Symbolic Access

All the functions of the DDCI interface feature symbolic access. The symbolic names given to variables
and functions in the instrument’s firmware are used to access them, instead of hard-coded addresses.
This is a very powerful feature of the DDCI interface. During development a great deal of time is wasted
tracking software bugs that are due to inconsistencies between the addresses at which variables are
accessed and the addresses at which they really reside in the instrument’s memory. Any rebuild of the
instrument’s firmware may lead to changes in variables addresses. If the instrument management
software on the PC is not modified accordingly, accesses occur at the wrong addresses. Because the
instrument management software on the PC - through the DDCI interface - accesses variables and
functions using their symbolic names, accesses always occur at the correct addresses. This is true
even after a rebuild of the instrument’s firmware. This powerful feature saves time during development
and eliminates a strong source of software bugs. Yet it is flexible enough to provide access to any
variable or function in the instrument’s firmware.

5 Improved Code Reliability

Another strong advantage of the DDCI interface is that it provides, with very little effort, much greater
real-time visibility into the operation of the code running on the instrument’s CPU. This greater visibility
during development directly translates into more reliable embedded code. Because the developer can
observe and act on variables with minimal interference on the execution of the code and very little
effort, a great deal more is observed during development than what would be the case in a more
traditional environment. In addition what is observed is more representative of reality because the DDCI
interface provides much less interference with the real-time execution of the code than traditional
emulation techniques.

The DDCI Interface Concept 3

The DDCI Interface Concept 4

6 Analysis with Hardware in the Loop

In many applications that implement complex signal processing algorithms it is necessary to simulate
the algorithm to validate its operation. Such simulations have to be designed using specialized
simulation software, and are often plagued by the lack of availability of real-life data. Often hardware-
specific factors, such as the characteristics of the acquisition chain used by the instrument, or the effect
of noise cannot be properly taken into account by the simulation.

The real-time instrumentation provided by the DDCI interface makes it possible to bring back the data
seen and processed by the instrument in real-life conditions. Because the DDCI interface is based on
the LabVIEW development environment the extensive LabVIEW signal analysis libraries are available
to add powerful analysis and display capabilities on the PC-side. This enables the analysis of the high-
level behavior of the signal-processing code with ease, and with real-life conditions and data. Often the
simulation step can be bypassed completely, with better results based on real data.

For instance in the Noise Sentry sound-level meter/datalogger the response of the microphone, and the
effect of the instrument enclosure on this frequency response can be measured precisely. From this
measurement an optimal equalizing filter can be designed and implemented in real-time, and the
flatness of the equalized response can be verified. This would be impossible to do without access to the
signal measured by the microphone itself, taking into account the acoustic interaction with its production
enclosure.

As another example, consider the case of the Vibration Sentry vibration-level meter/datalogger. Power
consumption is affected by the rate of signal observation. Through the DDCI interface power
consumption data can be acquired easily, in real-life conditions, using a production-level instrument
rather than a test bench.

7 Production Testing

Because it can provide low-level access to the instrument, the DDCI interface has a special role to play
during production testing. Using DDCI it is very easy to build automated test benches that thoroughly
exercise the individual hardware elements of the instrument quickly, fully and consistently. Defects are
easily detected and the defective instruments rejected. In addition, the high-level analysis provided by
the DDCI interface allows the implementation of very elaborate test and calibration procedures. For
instance in the Noise Sentry sound-level meter/datalogger, the frequency response of the instrument is
precisely measured and corrected using an equalizing filter that is optimized for each individual
instrument out of the production line. In contrast most sound level meters are only calibrated at 1 kHz.

8 A New Paradigm for Embedded System Development

Taken together, all the features of the DDCI interface offer a new paradigm for the design of embedded
systems. The difficulties associated with the development of systems with embedded processing are
mostly due to the lack of visibility into the code executing on the embedded system. In contrast the
development of code on computer systems is facilitated by the fact that the in-system development and
debugging tools offer great real-time visibility into the code running locally, on the computer itself. What
the Development to Deployment Code Instrumentation architecture offers is simply a way to interact
with the code running on the remote embedded platform with the same ease and functionality as if it
was part of the computer system hosting the development tools. In short it provides the same comfort
of development that all computer-system software developers are used to.

	1 Introduction
	2 The DDCI Concept
	3 Code Instrumentation
	4 Symbolic Access
	5 Improved Code Reliability
	6 Analysis with Hardware in the Loop
	7 Production Testing
	8 A New Paradigm for Embedded System Development

