

VSEW_mk2-8g

Data Sheet

Dec 4 2017

Bruno Paillard

1 PR	PRODUCT DESCRIPTION	
2 API	PLICATIONS	2
3 SPI	ECIFICATIONS	3
3.1 Fr	requency Response	5
3.1.1	Upper Frequency Limit	5
3.1.2	Low-Frequency Limit	6
3.2 No	oise	6
3.2.1	Acceleration Noise	6
3.2.2	Velocity Noise	7

1 Product Description

The VSEW_mk2 is a new model in the VSE series of smart vibration datalogers. It can record accelerations, vibrations, velocities and inclinations. It includes a 3-axis MEMS accelerometer, an accurate date/time clock and a non-volatile 128 Mb recording memory. Depending on the settings it can record acceleration or velocity signals and/or RMS levels for months. Its very small size allows it to be attached to, or embedded within, the monitored equipment.

The VSEW_mk2 model is an evolution of the Vibration Sentry E model. It has the following new features:

- Can measure, record and trigger on velocity signals, in addition to acceleration signals.
- Has WiFi reporting and email alarms.
- Includes an accelerometer with exceptional noise floor (20 times better noise floor than the *Vibration Sentry E 16g).*
- Sampling rates up to 4 kHz.
- Improved anti-aliasing filter.

The VSEW_mk2 includes the following features:

- 3-Axis integral MEMS accelerometer
- Measures and records:
 - Raw acceleration or velocity signals
 - Acceleration or velocity statistics
 - o Vibration or velocity levels
 - Inclinations
- All-digital design.
- Integrated oscilloscope function that can show the vibration or velocity signals in real time.
- Allows the observation of recorded data while the recording is ongoing.
- Works standalone, or USB or WiFi connected for setup and data transfer to PC.
- Long life internal rechargeable battery that recharges from USB.
- Self-calibrated using the earth's gravity as a reference.
- Observes and records 100% of the acceleration signals (no missed samples).
- Editable individual custom ID for easier instrument management.
- Completely sealed weatherproof enclosure.

2 Applications

- Building-health monitoring on construction sites.
- Long-term seismic monitoring.
- Long-term inclination monitoring.
- Long-term measurement and recording of acceleration signals, velocity signals, signal statistics (peaks and average) and RMS levels.
- Continuous monitoring of machinery wear.

3 Specifications

Category	Specification
Number of Axes	• 3
Acceleration Sensor	MEMS 3-axes
Dynamic Range (-8g)	• +-8 g
Bandwidth High Limit	Adjustable, up to 2 kHz (@ 4 kHz Sampling Rate)
Bandwidth Low Limit	 DC (High-Pass Filter Bypass) Adjustable from 10 mHz to <i>Fs/2</i> (High-Pass Filter On)
Acceleration Noise X-Y Axes (Typical)	 Note: Acceleration noise is primarily affected by the sampling rate. The higher the sampling rate, the higher the noise. -82 dBg (80 μg RMS) @ 125 Hz Sampling Rate -66 dBg (500 μg RMS) @ 4 kHz Sampling Rate
Acceleration Noise Z Axis (Typical)	 Note: Acceleration noise is primarily affected by the sampling rate. The higher the sampling rate, the higher the noise. -80 dBg (100 μg RMS) @ 125 Hz Sampling Rate -64 dBg (600 μg RMS) @ 4 kHz Sampling Rate
Velocity Noise X-Y Axes (Typical)	 Note: Velocity noise is primarily affected by the high-pass cutoff frequency. The lower the cutoff frequency, the higher the noise. -94 dB-m/s (20 μm/s RMS) @ 1 Hz High-Pass Cutoff -103 dB-m/s (7 μm/s RMS) @ 10 Hz High-Pass Cutoff
Velocity Noise Z Axis (Typical)	 Note: Velocity noise is primarily affected by the high-pass cutoff frequency. The lower the cutoff frequency, the higher the noise. -92 dB-m/s (25 μm/s RMS) @ 1 Hz High-Pass Cutoff -101 dB-m/s (9 μm/s RMS) @ 10 Hz High-Pass Cutoff
Inclination Angle Noise	Note: Measured using acceleration average, with a log interval of 1s, with the instrument positioned with the Z axis vertical, and X and Y axes horizontal • $1 E - 3^{\circ}$
Inclination Angle Temperature Stability	 Note: Measured using acceleration average, with a log interval of 1s, with the instrument positioned with the Z axis vertical, and X and Y axes horizontal 0.2° over the temperature range -20 °C to 60 °C
Connectivity	USBWiFi
Measurements	 Raw Acceleration (g or m/s²) Raw Velocity (m/s) Min, Max and Avg Acceleration values (g or m/s²) Min, Max and Avg Velocity values (m/s) Inclinations

	 Min, Max and Avg RMS Vibration level (linear or dB, g or m/s²) Min, Max and Avg RMS Velocity level (linear or dB, m/s)
Alarm Emails Duty Rate of Signal Capture	 Acceleration Signal Threshold (X, Y, Z axis) Velocity Signal Threshold (X, Y, Z axis) RMS Acceleration Level Threshold (X, Y, Z axis) RMS Velocity Level Threshold (X, Y, Z axis) Battery 100% - No Missed Samples
Spectral Display	• 3-Axes 1024-point Power Spectrum – dB or Lin Scale.
Modes of Operation	 Idle (Micro-Power) USB-Connected (Active) Recording (Stand-alone) Auto-Rec (Stand-Alone) Idle when no activity Recording while activity is present
Calibration	Self-Calibration using the earth's gravity as a reference
Battery Type	Integral Li-Poly - USB-Rechargeable
Recharge Time	• 2 H 30 (Typical)
Battery Autonomy (Full- Charge)	 Up to one year while in <i>Idle</i> 16 days to 125 days while recording, depending on settings
Battery Life	 > 300 Charge/Discharge Cycles
Temperature Range	 -20 degC to 60 degC (-4 degF to 140 degF)
Recording Memory	Non-Volatile Flash Memory
Recording Memory Capacity	 128 Mb Ex: can continuously record single-axis raw signals for 17 min @ 4 kHz Sampling Rate Ex: can continuously record 3-axes full-statistics levels at 1s intervals for 5 days Ex: can continuously record 3-axes full statistics levels a 1min intervals for 10 months.
Recording/Erasure Cycles	Greater than 100 000
Data Retention	Greater than 20 Years
Dimensions	 76.2 mm x 39.4 mm x 20.6 mm (3" x 1.55" x 0.81")
Weight	• 65 g

Construction

Table 1

3.1 Frequency Response

3.1.1 Upper Frequency Limit

•

<u>Figure 1</u> shows the response of the accelerometer structure and its acquisition chain, along the X and Y axes, at 4 kHz sampling rate.

Figure 2 shows the response of the accelerometer structure and its acquisition chain, along the Z axis, at 4 kHz sampling rate.

3.1.2 Low-Frequency Limit

The low-frequency can optionally be limited by the digital high-pass filter. The cutoff frequency is adjustable, and can be adjusted to extremely low frequencies thanks to the filter's exceptionally high resolution. *Figure 3* shows the low-frequency response for a high-pass filter adjusted to 1 Hz, 5 Hz and 10 Hz, and operating at 4 kHz sampling frequency.

Figure 3 High-Pass Filter

3.2 Noise

3.2.1 Acceleration Noise

Figure 4 shows the RMS noise along the three axes, as a function of sampling frequency.

Figure 4

Figure 5 shows the acceleration noise spectrum when the accelerometer is sampling at 4 kHz.

Figure 5

3.2.2 Velocity Noise

<u>Figure 6</u> shows the RMS velocity noise as a function of the cutoff frequency of the high-pass filter. The velocity noise is not significantly influenced by sampling frequency.

Figure 6