

NSRT_mk4_Dev
Com Protocol

February 6 2025

Bruno Paillard

NSRT_mk4_Dev 1

1 INTRODUCTION ___ 2

2 COM PORT ENUMERATION ____________________________________ 2

3 COM PORT CONFIGURATION __________________________________ 2

4 COMMUNICATION STRUCTURE ________________________________ 2

5 ENDIANNESS ___ 2

6 BASIC TYPES ___ 2

7 PACKET STRUCTURE __ 3

7.1 Command Packet ___ 3

7.2 Data Packet ___ 4

7.3 Acknowledge __ 4

7.4 Commands __ 4

8 DATA PERSISTENCE ___ 7

NSRT_mk4_Dev 2

1 Introduction

The NSRT_mk4_Dev is a variant of the NSRT_mk4 series that introduces an open virtual Com port
communication protocol. That means that the instrument can be used on any platform that has a generic
driver to support the CDC (Communication) USB class. Nowadays most platforms support that class,
including Windows, Mac and Linux.

That instrument is targeted at developers. Because its communication protocol is open, developers can
design their own application supporting the instrument.

In addition to the Com port, the NSRT_mk4_Dev can have an optional USB Audio interface to stream
the actual Audio signal captured by the microphone.

2 COM Port Enumeration

When the instrument is enumerated by the host PC, one of the interfaces that it presents is a virtual COM
port (a CDC-Class USB device). On Windows 10 and up the generic Windows COM port driver is
automatically instantiated and bound to that interface. On Windows 7 and 8, even though Microsoft
provides a generic driver, the user must manually load the driver when the device is connected to the PC
for the first time. After the driver is loaded, a new COM port is shown in the list of devices connected to
the PC.

3 COM Port Configuration

The COM port can be configured (bit rate, number of stop bits… etc.), either using the controls in
Windows Device Manager, or in an application by using the appropriate API functions. However such
settings have no effect on the actual communication. They are only exposed for compatibility. At the
hardware level there is no physical serial line present, and the ultimate communication speed is only
determined by the throughput of the USB link. That throughput is typically around 3 Mbps when there are
no other devices on the USB bus.

4 Communication Structure

Exchanges between the host PC and the instrument always follow a Master-Slave model. The host
initiates an exchange using a Command Packet. The host may also send data following that Command
Packet. The instrument responds either with data, or with an Ack byte if no data is to be transmitted back
to the host.

In all cases after sending a command, the host PC must not send another command before the
instrument sends a response back. That response may be data or may be an Ack if no data is requested
by the command.

5 Endianness

Unless otherwise noted, the endianness is Little-Endian.

6 Basic Types

The following basic types may be used in this protocol:

NSRT_mk4_Dev 3

Type
Name

Description Endianness

U8 Single byte unsigned N/A

U16 16-bit word unsigned Little-Endian

U32 32-bit word unsigned Little-Endian

U64 64-bit word unsigned Little-Endian

I8 Single byte signed N/A

I16 16-bit word signed Little-Endian

I32 32-bit word signed Little-Endian

I64 64-bit word signed Little-Endian

Sgl 32-bit word in IEEE 754 floating point format Little-Endian

Dbl 64-bit word in IEEE 754 floating point format Little-Endian

String Strings are concatenations of 8-bit ASCII characters, terminated by an
end-of-text (0x00) byte.

N/A

Table 1

7 Packet Structure

7.1 Command Packet
The Command Packet is structured as follows:

Field Size
(bytes)

Function

Command 4 The command indicates the data transmitted or operation performed. The
indicated direction of transmission is host-centric.

Bit 31 of the command word indicates the direction of transfer:

• 0: OUT (Host to Device)

• 1: IN (Device to Host)

Address 4 The function of the address field varies with the command

Count 4 This field indicates the number of bytes to be transferred in the following data
packet (either an IN or an OUT). How the bytes are interpreted is defined by
the command.

This number DOES NOT INCLUDE the command packet.

Table 2

NSRT_mk4_Dev 4

7.2 Data Packet
Data Packets are simply a concatenation of bytes. The way the bytes are interpreted is a function of the
command that precedes the Data packet.

7.3 Acknowledge
The Ack is a single byte with value 0x06. The Ack byte is only sent back to the host if the command is a
Write, and therefore does not require a data response from the device. When the command is a Read,
the actual data sent back to the host serves that purpose.

7.4 Commands

Command Description Address Count Data/Ack

0x80000010 Read_Level

This command retrieves the
current running level in dB. That is
an exponentially averaged level,
using the time constant and
weighting function set for the
instrument. That is not an LEQ.

The address
field is not
relevant for
this
command

4 Data:

32-bit IEEE-754 Float
representing the Level in
dB

Ack: No

0x80000011 Read_LEQ

This command retrieves the
current running LEQ and starts
the integration of a new LEQ. This
way the next Read_LEQ
command returns the LEQ
calculated between the present
time and the retrieval of the
previous LEQ.

The address
field is not
relevant for
this
command

4 Data:

32-bit IEEE-754 Float
representing the LEQ in
dB

Ack: No

0x80000012 Read_Temperature

This command retrieves the
temperature.

The address
field is not
relevant for
this
command

4 Data:

32-bit IEEE-754 Float
representing the
temperature in degC

Ack: No

0x80000020

Read_Weighting

This command returns the
weighting curve that is currently
selected

The address
field is not
relevant for
this
command

1 Data:

1 byte representing the
weighting curve:

0: dB-C
1: dB-A
2: dB-Z

Ack: No

NSRT_mk4_Dev 5

0x00000020

Write_Weighting

This command selects the
weighting curve

The address
field is not
relevant for
this
command

1 Data:

1 byte representing the
weighting curve:

0: dB-C
1: dB-A
2: dB-Z

Ack: Yes

0x80000021

Read_FS

This command reads the current
sampling frequency

The address
field is not
relevant for
this
command

2 Data:

U16 representing the
sampling frequency in
Hz:

32000: 32 kHz
48000: 48 kHz

Ack: No

0x00000021

Write_FS

This command sets the sampling
frequency

The address
field is not
relevant for
this
command

2 Data:

U16 representing the
sampling frequency in
Hz. There are only two
choices:

32000: 32 kHz
48000: 48 kHz

Ack: Yes

0x80000022

Read_Tau

This command reads the current
time constant

The address
field is not
relevant for
this
command

4 Data:

32-bit IEEE-754 Float
representing the time
constant in s.

Ack: No

0x00000022

Write_Tau

This command sets the time
constant

The address
field is not
relevant for
this
command

4 Data:

32-bit IEEE-754 Float
representing the time
constant in s.

Ack: Yes

0x80000031 Read_Model

This command reads the
instrument model

The address
field is not
relevant for
this
command

0-32 Data:

ASCII string
representing the Model.

NSRT_mk4_Dev 6

 Size: Up to 32 bytes,
including the termination
byte

Ack: No

0x80000032 Read_SN

This reads the serial number of
the instrument

The address
field is not
relevant for
this
command

0-32 Data:

ASCII string
representing the serial
number of the
instrument.

Size: Up to 32 bytes,
including the termination
byte

Ack: No

0x80000033 Read_FW_Rev

This command reads the
firmware revision number.

The address
field is not
relevant for
this
command

0-32 Data:

ASCII string
representing the
Firmware revision.

Size: Up to 32 bytes,
including the termination
byte

Ack: No

0x80000034 Read_DOC

This command reads the date of
last calibration.

The address
field is not
relevant for
this
command

8 Data:

U64 number
representing the UTC
(Universal Time Code)
of the date/time of last
calibration. The UTC
represents the number
of seconds elapsed
since Jan 1 1904.

Ack: No

0x80000035 Read_DOB

This command reads the date of
birth of the instrument.

The address
field is not
relevant for
this
command

8 Data:

U64 number
representing the UTC
(Universal Time Code)
of the date/time of birth.
The UTC represents the
number of seconds
elapsed since Jan 1
1904.

NSRT_mk4_Dev 7

Ack: No

0x80000036 Read_User_ID

This command reads the User_ID
field. That field can be written in
persistent memory using the
Write_User_ID command.

The address
field is not
relevant for
this
command

0-32 Data:

ASCII string
representing the User-
ID, as defined by the
user.

Size: Up to 32 bytes,
including the termination
byte

Ack: No

0x00000036 Write_User_ID

This command writes the User_ID
field in persistent memory.

The address
field is not
relevant for
this
command

0-32 Data:

ASCII string
representing the user-
ID, as defined by the
user.

Size: Up to 32 bytes,
including the termination
byte

Ack: Yes

0x00000036 Write AudioDebug Mode

This command sets or resets the
Audio debug mode. When in
debug mode the instrument
outputs a perfect 1 kHz sine wave
at an amplitude of 94 dB on its
USB Audio interface.

Note: This mode only affects
the USB Audio interface. The rest
of the instrument keeps outputting
the levels measured by the
microphone

Note: This command is only
supported in firmware V1.4 and
up.

The address
field is not
relevant for
this
command

1 Data:

1 byte representing the
Audio Debug mode:

0: Normal mode
1: Debug mode

Ack: Yes

Table 3

8 Data Persistence

The following parameters are stored in Flash memory and are persistent:

• User_ID: The user-modifiable identifier for the instrument

NSRT_mk4_Dev 8

• Tau: The time constant of the instrument. That time constant applies to the
instantaneous level, but NOT to LEQs. LEQs are calculated using a rectangular averaging
between two reads of the value.

• FS: The sampling frequency

• Weighting: The weighting function (A, C or Z)

The Flash memory that is used to contain these values can sustain approximately 10 000 write cycles
over the lifetime of the instrument. Even though that is a large number, the instrument is not designed to
sustain constantly changing the values in rapid succession. For instance, switching the weighting function
back and forth in an attempt to read both A and C levels all the time will quickly exhaust the number of
cycles guaranteed for that Flash memory.

Whenever Tau, Fs or Weighting are modified, the instrument’s correction filters are reset and that creates
a transient spike in the indicated levels. To read valid levels after changing one of these parameters, a
delay of at least the largest of 1 second, or 10 times the value of Tau should be observed.

	NSRT_mk4_Dev
	Com Protocol

	1 Introduction
	2 COM Port Enumeration
	3 COM Port Configuration
	4 Communication Structure
	5 Endianness
	6 Basic Types
	7 Packet Structure
	7.1 Command Packet
	7.2 Data Packet
	7.3 Acknowledge
	7.4 Commands

	8 Data Persistence

